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An efficient formalism for calculating protein structures from oriented-sample NMR data in the torsion-
angle space is presented. Angular anisotropies of the NMR observables are treated by utilizing an irreduc-
ible spherical basis of rotations. An intermediate rotational transformation is introduced that greatly
speeds up structural fitting by rendering the dependence on the torsion angles U and W in a purely diag-
onal form. Back-calculation of the simulated solid-state NMR spectra of protein G involving 15N chemical
shift anisotropy (CSA), and 1H–15N and 1Ha–13Ca dipolar couplings was performed by taking into account
non-planarity of the peptide linkages and experimental uncertainty. Even a relatively small (to within
1 ppm) random variation in the CSA values arising from uncertainties in the tensor parameters yields
the RMSD’s of the back-calculated structures of more than 10 Å. Therefore, the 15N CSA has been substi-
tuted with heteronuclear dipolar couplings which are derived from the highly conserved bond lengths
and bond angles associated with the amino-acid covalent geometry. Using the additional 13Ca–15N and
13C0–15N dipolar couplings makes it possible to calculate protein structures entirely from ‘‘shiftless’’
solid-state NMR data. With the simulated ‘‘experimental’’ uncertainty of 15 Hz for protein G and
120 Hz for a helical hairpin derived from bacteriorhodopsin, back-calculation of the synthetic dipolar
NMR spectra yielded a converged set of solutions. The use of distance restraints dramatically improves
structural convergence even if larger experimental uncertainties are assumed.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In the past two decades, solid-state NMR of uniaxially aligned
samples has been successfully applied to three-dimensional struc-
ture determination of membrane proteins [1–7]. Due to substantial
improvements in the decoupling pulse sequences [8–12] and
methods of alignment [13–15], oriented-sample NMR has demon-
strated its effectiveness as a complementary method to traditional
X-ray diffraction and solution and magic-angle spinning (MAS)
NMR spectroscopy for studying membrane proteins.

In solid-state NMR of oriented samples, membrane proteins are
aligned uniaxially in the phospholipid bilayer environment, so that
the experimental observables are orientationally dependent, and
the structural information is directly contained in the NMR spectra.
The observables typically include heteronuclear dipolar couplings
and chemical shift anisotropy (CSA) associated with the isotopi-
cally labeled 15N or 13C sites. Previously, protein backbone struc-
tures were determined by assembling the final structure from
fragments of peptide planes by calculating the possible orienta-
tions of the magnetic field relative to the molecular frame associ-
ated with each residue [1,16,17]. The orientational degeneracies
were reduced by examining the chemical and steric allowances
ll rights reserved.

vzorov).
as suggested by the Ramachandran plot, chemical shift values,
the angles calculated from the dipole-dipole and quadrupolar
interactions, and bond angles and distances between the specific
atoms [1,16–18]. To improve resolution and reduce the degeneracy
of the structural solutions, measurements involving the alpha car-
bon (13Ca), such as the chiral 1Ha–13Ca dipolar couplings, may need
to be introduced [19] in addition to the most widely used 15N CSA
and 1H–15N dipolar couplings. New triple-resonance pulse se-
quences [20] involving 15N and 13C correlations and ‘‘shiftless’’
acquisition techniques [21] are especially encouraging in this
regard.

So far, only the planar form of the trans peptide unit has been
used as the standard geometry for structure calculations in ori-
ented-sample NMR. However, back in 1968 Ramachandran pointed
out the significance of out-of-plane distortions in the polypeptide
chains, especially in cyclic peptides, which was supported by en-
ergy calculations [22,23]. A survey on the torsion angles x describ-
ing the rotation around the amide bond in peptides and proteins
was implemented by considering the Cambridge Structural Data-
base (CSD) of small molecules and the Brookhaven Protein Data-
bank (PDB), which showed that for all good-quality crystal
structures, the average twist was around 0.5� [24]. Scheiner and
Kern have indicated that certain environmental effects such as
the formation of hydrogen bonds contributed to the non-planar
conformation as well [25]. Consequently, out-of-plane deviations
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Fig. 1. Local molecular frame associated with a peptide plane. The orientation of
the main magnetic field B0 relative to the nth peptide plane is described by two
angles an and bn. An approximate orientation of the 15N CSA tensor relative to the
peptide plane is represented by arrows originating from the N atom. Two adjacent
amino acid residues are linked by the torsion angles Un and Wn. Deviation from
peptide planarity is given by the angle x. The angle aNCa denotes the angle between
the N–Ca bond and the y-axis of the MF corresponding to the nth plane, cN is the
angle between the NH bond and the r33 axis of the 15N CSA, ctetra is the tetrahedral
angle, and aNC0Ca and cHNC0 are given by the standard peptide plane geometry.
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of the peptide linkages should be included in the refinement of the
calculated protein structures.

Another potential problem affecting the accuracy of the calcu-
lated structures is the possible variations in the magnitude of the
principal components and orientation of the shielding tensor along
the polypeptide chains [26,27]. A more recent work [28] provides a
comprehensive review of the variation of CSA in soluble proteins.
In a quantum mechanical study on the chemical shift tensors of
peptides [29], the most shielded component of the 15N chemical
shift tensor was found to deviate substantially from the peptide
plane particularly in helical domains, and the principal value of
the 13Ca chemical shift tensor along the 1Ha–13Ca bond was found
to be very sensitive to the torsion angles U and W. In addition to
the variations in the tensor values, there is also experimental accu-
racy (uncertainty) in the determination of the values themselves.
Lee et al. [30] reported the 15N chemical shift tensor parameters
for the 15N-Gly-18 residue to be r11N = 42 ± 2 ppm, r22N = 73 ±
2 ppm, r33N = 215 ± 2 ppm, aN = 30 ± 10�, bN = 22 ± 2� (here, aN

and bN describe the orientation of the chemical shift tensor relative
to the molecular frame); whereas the parameters for 15N-Phe-16
were r11N = 55 ± 2 ppm, r22N = 80 ± 2 ppm, r33N = 220 ± 2 ppm,
aN = 45 ± 15�, bN = 22 ± 3�. These findings indicated a significant ef-
fect of the local chemical and geometrical environment on the
magnitude and orientation of the 15N CSA [31]. While the principal
components of the CSA tensor can be directly measured for each
specific amino-acid site of the protein using either the Herzfeld–
Berger method [32] as in MAS NMR [33,34], or relaxation methods
as in solution NMR [35], the orientation of the tensor relative to
each peptide plane is somewhat less precisely determined.

Nonetheless, in structure calculations from oriented-sample
NMR data, the 15N CSA tensor is usually assumed to have the same
orientation and average values of the principal components for all
amino-acid residues: r11N = 64 ppm, r22N = 77 ppm, r33N =
217 ppm [36,37] (for glycines these values are assumed to be
r11N = 41 ppm, r22N = 64 ppm, r33N = 210 ppm). For alpha-helical
structures with the highly constrained torsion angles U and W
and well-defined hydrogen bonding, the above-mentioned tensor
variations and uncertainties do not generally represent a problem
since the arising orientational solutions can be easily sorted out
[16–18,38–40]. Structures of macroscopically aligned proteins hav-
ing up to 50 residues can be obtained even in the presence of short
connecting loops by imposing weak packing and hydrophobic re-
straints [4]. However, the variations and/or uncertainty in the ten-
sor parameters can become an important issue in calculating
backbone conformations with less restrained torsion angles such
as the connecting interhelical loops or b-type structures. This be-
comes evident from the fact that the orientational restraints (dipo-
lar couplings, CSA) provide only one or two angles that define the
orientation of the peptide plane relative to the laboratory frame;
whereas three Euler angles are necessary to unequivocally define
the orientation of a rigid body. Therefore, the calculated structures
can branch off at a point where the multiple solutions correspond-
ing to the relative orientations of the adjacent peptide units are
distributed uniaxially around the main magnetic field. It has been
shown [19] that in the absence of uncertainty in the tensor values
and experimental error there is a mathematically unique structural
solution to a three-dimensional solid-state NMR spectrum (includ-
ing 15N CSA, and 1H–15N and 1Ha–13Ca dipolar couplings). How-
ever, the above-mentioned uncertainties are still inevitably
contained in the experimental data. In the present paper we eval-
uate the effect of experimental error on the accuracy and conver-
gence of the calculated structures. Resolving these important
issues could potentially give way to a complete de novo structure
determination of membrane proteins of arbitrary topology as
experimentally determined dipolar couplings for the doubly-la-
beled proteins become available.
2. NMR observables in the spherical basis and the algorithm

In oriented-sample (OS) NMR spectroscopy, the structural infor-
mation is obtained directly from angular-dependent observables;
therefore, the Cartesian basis is not very efficient. To deal with
the constraints in the angular space and minimize the number of
required calculations we choose the irreducible spherical basis of
rank 1 to relate the protein structure to its multidimensional so-
lid-state NMR spectra. The molecular frame (MF) depicted in
Fig. 1 is associated with an individual peptide plane, in which the
x-axis is along the NH bond, and the z-axis is perpendicular to
the plane determined by the N–H and C0–N bonds (where C0 de-
notes the carbonyl atom). The orientation of the magnetic field
B0 relative to the MF is described by the angles a and b. To avoid
explicit calculation of the trigonometric functions in the NMR fre-
quencies, a more compact quadratic form was previously em-
ployed [19]:

m ¼ Y
!
ðb;aÞ½DðXMPÞMD�1ðXMPÞ�Y

!
þðb;aÞ ð1Þ

Here Y
!
ðb;aÞ denotes the row vector of the unnormalized spherical

harmonics, Y
!
ðb;aÞ ¼ � sin bffiffi

2
p eia cos b sin bffiffi

2
p e�ia

� �
. The rank-1 Wig-

ner rotation matrix D(XMP) describes the transformation from the
MF to the principal axis system of each tensor, and the superscript
‘‘+’’ denotes the Hermitian conjugate. The matrix M corresponds to
the specific type of interactions (e.g. CSA or dipolar) as defined
below.

To include deviations from the planarity of peptide units, the
following propagator matrix is introduced by employing a product
of three Wigner rotation matrices:

PðUn;Wn;xnÞ ¼DðaNCa ;Un; ctetraÞDð0;�Wn � p;0Þ
Dð�aNC0Ca ;p�xn;�p=2� cHNC0 Þ ð2Þ

The three torsion angles that result in the secondary and tertiary
conformations of the polypeptide chains are denoted as Un, Wn,
and xn (Fig. 1). The remaining angles reflect the local peptide bond
geometry. The angle aNCa denotes the angle between the N–Ca bond
and the y-axis of the MF corresponding to the nth plane,
aNCa = 151.8�; ctetra is the tetrahedral angle, typically 110–112� in
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real proteins instead of the ideal value 109.47�. The other angles can
be also calculated from the standard peptide plane geometry [41],
and are given by: aNC0Ca = 115.6�; cHNC0 = 119.5�. Here, the bond an-
gles are assumed constant for all amino acid residues of the protein.

The orientation of the magnetic field B0 relative to the MF of the
next peptide plane can be calculated in a recursive manner by
operating the above propagator matrix P(U, W, x) from the right
on the row vector of the spherical harmonics corresponding to
the orientation of B0 with respect to the preceding frame:

Y
!
ðbnþ1;anþ1Þ ¼ Y

!
ðbn;anÞPðUn;Wn;xnÞ ð3Þ

We note that the Wigner rotation matrices in Eq. (2) can be ex-
pressed in terms of the angular momentum operators Ly and Lz in
the following manner [42]:

Dðu; h;wÞ ¼ e�iuLz e�ihLy e�iwLz � Zð�uÞYð�hÞZð�wÞ ð4Þ

Here, the individual angular momentum operators are defined as:

Lx �
1ffiffiffi
2
p

0 1 0
1 0 1
0 1 0

0
B@

1
CA; Ly �

iffiffiffi
2
p

0 �1 0
1 0 �1
0 1 0

0
B@

1
CA; Lz �

1 0 0
0 0 0
0 0 �1

0
B@

1
CA

ð5Þ

and a short-hand notation is used to designate rotation about the
corresponding axis, i.e. Z(�u) � exp(�iuLz), etc. In the propagator
matrix, Eq. (2), the first and the third Euler angles of each Wigner
rotation matrix are constant, thus reflecting the highly restrained
covalent bond angles, while the second angle (corresponding to a
rotation generated by the operator Ly) is variable. However, the
non-diagonal form for Ly, Eq. (5), indicates that the number of ele-
ments that one needs to calculate is much greater than those re-
quired for the diagonal operator, Lz. Consequently, by using the
following transformation rules for the rotation operators,

X
p
2

� �
YðhÞX �p

2

� �
¼ ZðhÞ; X

p
2

� �
ZðuÞX �p

2

� �
¼ Yð�uÞ ð6Þ

one can diagonalize the variable part for the rotations correspond-
ing to the torsion angles U, W, and x in the propagator, Eq. (2). This
is easily accomplished by inserting an extra transformation T = X(p/
2) in the quadratic form, yielding the transformed Q-basis:

m ¼ Q
!
ðb;aÞ½DQ ðXMPÞMQ D�1

Q ðXMPÞ�Q
!
þðb;aÞ ð7Þ

Here the spherical harmonics Q
!
ðb;aÞ replace Y

!
ðb;aÞ of Eq. (1) and

together with the transformed matrices DQ(XMP) and MQ are given
by:

Q
!
ðb;aÞ ¼ Y

!
ðb;aÞT

DQ ðXMPÞ � T�1DðXMPÞT; MQ � T�1MT ð8Þ

For any CSA, the interaction matrix M can be expressed in terms
of the principal components r11, r22 and r33 (r33 > r22 > r11) as:

M ¼

r11þr22
2 0 r22�r11

2

0 r33 0
r22�r11

2 0 r11þr22
2

0
B@

1
CA ð9Þ

For instance, for 15N CSA, the corresponding Euler angles are gi-
ven by: X15N

MP ¼ ðcN;p=2;p=2þ aNÞ, where cN = 15–20� is the angle
between the NH bond and the r33 axis of the 15N CSA, aN = 0–25� is
the angle between the r22 axis of 15N CSA and the normal of the
peptide plane; for 1H CSA, X

1H
MP ¼ ð�p=2;�p=2;p=2Þ. It should be

noted, however, that in real polypeptides and proteins, the orienta-
tion of the 1H CSA frame is highly variable [28].
For the heteronuclear dipolar couplings, the interaction matrix
is the product of the corresponding dipolar coupling constant
v � l0c1c2h=16p3r3

12 (in Hz) and a diagonal matrix:

M ¼ v
�1=2 0 0

0 1 0
0 0 �1=2

0
B@

1
CA ð10Þ

where c1 and c2 are the gyromagnetic ratios of the two interacting
spins, and r12 is the interspin distance. For the 1H–15N dipolar cou-
plings, the related Euler angles are given by X

1H—15N
MP ¼ ð0;p=2;0Þ; for

13Ca–15N dipolar couplings, the Euler angles for the corresponding
transformation are given by X

13Ca�15N
MP ¼ ð�aHNCa ;p=2;0Þ, where

aHNCa = 118.2�; for 13C0–15N dipolar couplings, the Euler angles are
given by X

13C0�15N
MP ¼ ðaHNC0 ;p=2;0Þ, where aHNC0 = 119.5�.

The inclusion of the 1Ha–13Ca dipolar couplings, which repre-
sent an additional chiral restraint, is necessary to further reduce
the number of the orientational solutions. The corresponding
transformation associated with the 1Ha–13Ca dipolar couplings is
given by [19]:

DðX1H—13Ca
MP Þ ¼ DðaNCa ;U� p=3;p=2� cidealÞDð0;�p=2;0Þ: ð11Þ

It should be emphasized that the overall matrix in the square brack-
et given by Eq. (7) as well as all the non-diagonal rotation matrices
need to be calculated only once, and the protein chain geometry is
contained in the spherical harmonics Q

!
ðb;aÞ, which vary through-

out the backbone via the new recurrence relation:

Q
!
ðbnþ1;anþ1Þ ¼ Q

!
ðbn;anÞPQ ðUn;Wn;xnÞ ð12Þ

where PQ (U, W, x) = T�1 P(U, W, x) T.
Eqs. (7)–(12) can be used to determine the torsion angles U and

W associated with the adjacent residues along the polypeptide
backbone iteratively in a sequential manner. Experimental uncer-
tainty can be treated by randomizing the values for the input fre-
quencies within a pre-defined range (in Hz) in order to obtain
different structural solutions for each fit within a pre-defined tol-
erance. The solutions for the torsion angles U and W are further re-
stricted by the differential Ramachandran plots [43] to
automatically keep only the allowed regions. The normalized
Ramachandran plots have been chosen by residue type, and in-
clude glycines, prolines, pre-prolines, and the general-type plots
[4] as shown in Fig. 2 (with the cutoff for the lowest contour cho-
sen as 10�3). The algorithm [Eqs. (7)–(12)] depicted by the flow-
chart of Fig. 3 has been programmed in MATLAB (Mathworks,
Inc.), and the solutions for the torsion-angles are found by mini-
mizing the difference between the back-calculated frequencies
and the simulated NMR data from the known PDB structures. Since
the sign of the dipolar interaction cannot be experimentally deter-
mined, only absolute values for the dipolar couplings are used. In
minimizing the root-mean square (rms) deviations relative to the
input frequencies, all CSA and dipolar couplings have been scaled
so that their maximum values would correspond to that of the
1H–15N coupling (10 kHz) to achieve equal weight in the fitting.
If a pair of U and W satisfying the experimental restraints and
the pre-defined tolerance (i.e. falling within the ‘‘experimental
uncertainty’’, in Hz) is found, the search will proceed to the next
pair; otherwise, if no acceptable solution is found, the algorithm
will go back several residues (typically 3–5 in the calculations) to
search for different solutions. Since MATLAB employs a Simplex-
type minimizer (i.e. fminsearch), the starting values for the torsion
angles are randomized at each residue except those in a-helical re-
gions from �180� to +180� to find possible alternative solutions for
every iteration. For residues in the a-helical regions, the torsion
angles are sought in the region: U0 = �60 ± 30�, W0 = �45 ± 30�.
To avoid the algorithm getting stuck at a certain unfavorable



Fig. 2. Normalized Ramachandran plots for different residue types, including glycines, prolines, pre-prolines and the general-type residues with the lowest probability
density cutoff of 10�3.
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combination of the input data or at a certain residue an automatic
restart has been implemented. Any number of frequency con-
straints can be introduced in the calculations.

3. Results and discussion

3.1. Structural fitting of simulated three-dimensional spectra with 15N
CSA, and 1H–15N and 1H–13Ca dipolar couplings

Relative convenience of the uniform 15N labeling has rendered
two-dimensional solid-state NMR spectra involving 15N CSA and
1H–15N dipolar couplings as a useful tool for the studying of the
helical domains of membrane proteins. However, just two spectral
dimensions are generally insufficient to calculate tertiary struc-
tures of arbitrary topology solely from the oriented-sample NMR
data; an important additional angular constraint, the 1Ha–13Ca
dipolar coupling, needs to be introduced [19]. A simulated three-
dimensional solid-state NMR spectrum of protein G (PDB ID
2GB1) is shown in Fig. 4A. When the experimental uncertainty is
assumed to be only 0.01 Hz in all dimensions, and no randomiza-
tion of the input data is performed, back calculation of 100 struc-
tures yielded a converged set of solutions as shown in Fig. 4B.
The calculated RMSD’s relative to the initial structure are about
10�5 Å, indicating a mathematically unique solution. Based on
the analysis of the structure of protein G (PDB file 2GB1), the tor-
sion angle x is assumed here to be 178� to describe the deviation
from the peptide planarity. The torsion angles U and W have been
restricted by residue type as described in the previous Section, and
U and W associated with residues 11 and 37 (our numbering),
which correspond to the original residues Glu15 and Gly41, have
not been restricted as they would be considered outliers.

However, when just the 15N CSA dimension of the input data is
randomly varied within ±1 ppm or ±50 Hz (at 500 MHz 1H NMR
frequency), RMSD’s of some of the calculated structures become
more than 10 Å as shown in Fig. 5. This variation in the CSA was
chosen to reflect the above-mentioned uncertainties in both the
principal components and, especially, the orientation of the CSA
tensor (see Supplementary material for additional simulations).
Even a slight randomization of the angle cN to within ±1� results
in a highly non-uniform variations of the observed 15N CSA fre-
quencies of up to ±3 ppm. To assess the effect of experimental
uncertainty in the tensor parameters only, the input data have
been simulated by assuming the average tensor values for all ami-
no acids, and the back-calculation has been performed by using the
same tensor values. An average uniform ±1 ppm uncertainty was
assumed for representative simulations. A two-dimensional pro-
jection of the simulated three-dimensional spectra shown in
Fig. 5A demonstrates that such small variations in the CSA frequen-
cies (the dots show the fitted values with 100 Hz tolerance) with
respect to the original input data (circles) cause a complete scatter
in the calculated structures (100 representative structures are
shown in Fig. 5B). Such a divergence in the structural solutions is
most likely due to the multitude of possible orientational solutions
for the weakly restrained torsional conformations in the loop re-
gions that are uniaxially distributed around the magnetic field, as
was mentioned in the Introduction.

3.2. Structural fitting of the three-dimensional ‘‘shiftless’’ spectra with
1H–15N, 1H–13Ca and 13Ca–15N dipolar couplings

On the other hand, heteronuclear dipolar couplings, which only
depend on the covalent bond angles and lengths of the relevant
atoms, would seem to represent a much more reliable constraint
for the structural fitting than the CSA. The average bond lengths
and angles are highly conserved and can be accurately determined
[41]. Therefore, the 15N CSA has been replaced by the 13Ca–15N
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Fig. 3. A flowchart for the structural fitting algorithm. The figure describes the procedure for structure determination by minimizing the difference between the calculated
data and the synthetic data generated from the PDB file including the Ramachandran-plot restrictions for the torsion angles U and W and post-fitting filtering. Only absolute
values for the dipolar couplings are used in the calculations. For further details cf. the text.
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dipolar couplings to examine the performance of the ‘‘shiftless’’
[20,21] solid-state NMR data for the structural fitting of protein
G. Fig. 4C shows the simulated spectrum. Just as in the case of uni-
form 15N CSA, a mathematically unique solution as in Fig. 4B can be
obtained from the back calculation of the simulated spectra with-
out taking into account any experimental uncertainty. However,
when an ‘‘experimental uncertainty’’ of 15 Hz is assumed in all
three dimensions, the back-calculated structures begin to diverge
(Fig. 6A). More than one half of the RMSDs are around 7 Å. To illus-
trate the quality of the fit to the synthetic NMR data, we also plot
the rms deviations of the fitted frequencies in Hz (over 1000 fits)
relative to the ‘‘experimental’’ (i.e. calculated from the PDB coordi-
nates) data for each residue as shown in Fig. 6B. The average rms
deviation for all residues is around 7 Hz, and residues 27, 31 (at
the ends of the a-helix; our numbering) and 44 (in a b-turn) show
somewhat larger deviations.

3.3. Structural fitting of four-dimensional data with 1H–15N, 1H–13Ca,
13Ca–15N and 13C0–15N dipolar couplings

An additional dimension, the 13C0–15N dipolar interaction, has
been included to improve the convergence of the calculated struc-
tures in the presence of ‘‘experimental’’ uncertainty in the mea-
sured couplings. When the data uncertainty is assumed to be
15 Hz, a converged set of solutions containing 1000 structures
can be obtained. The structural RMSDs are less than 2 Å as shown



Fig. 4. (A) Structural fitting of the simulated three-dimensional solid-state NMR spectrum of protein G obtained from PDB coordinates 2GB1 including 15N CSA, 1H–15N
dipolar couplings and 1Ha–13Ca dipolar couplings. No uncertainty in the input data (circles) is considered. The fitted frequencies are depicted as crosses. (B) A mathematically
unique structural solution is obtained that coincides with the original structure. (C) Fitting of simulated three-dimensional ‘‘shiftless’’ solid-state NMR spectra created by
substituting the 15N CSA dimension by the 13Ca–15N dipolar couplings. No experimental uncertainty is assumed. The same unique solution as from fitting the data in part A is
obtained.

Fig. 5. (A) Two-dimensional projection of the simulated spectra (circles) with the same dimensions as in Fig. 2 with 15N CSA input data randomly varied within 1 ppm for
each simulation. The tolerance for the fitting of the input data is 100 Hz. The fitted frequencies are given by dots (no randomization was applied to the other two dimensions).
Inset shows a magnified distribution of the fitted frequencies. (B) Back-calculated structures deviate substantially for each simulation. The RMSDs for some of the calculated
100 structures relative to the original structure are more than 10 Å.

Fig. 6. (A) Structural fitting of simulated three-dimensional ‘‘shiftless’’ solid-state NMR spectra containing 1H–15N, 1Ha–13Ca and 13Ca–15N dipolar couplings. Histogram of the
RMSDs relative to the starting structure shows that when the tolerance for the fitting of the input data is 15 Hz, more than one-half of the RMSDs for 1000 calculated
structures are around 7 Å. (B) The root-mean square deviations (in Hz) at each residue for 1000 fits with respect to the synthetic data simulated from the PDB coordinates. The
cylinder and the arrows at the bottom represent the a-helix and two b-sheets, respectively.
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Fig. 7. (A) Structural fitting of simulated four-dimensional data for protein G including additional 13C0–15N dipolar couplings. With the tolerance for the fitting of the input
data of 15 Hz, all back-calculated structures are converged with RMSDs less than 2 Å. (B) The root-mean square deviations (in Hz) at each residue for 1000 fits with respect to
the simulated data from the PDB coordinates.

Fig. 8. A and B: Histograms of the RMSDs of 1000 back-calculated structures obtained from three-dimensional ‘‘shiftless’’ solid state NMR spectra of protein G (2GB1) with a
tolerance of 25 Hz (A) and 50 Hz (B). C and D: Histograms of the RMSDs for the structures satisfying the distance restraints between the Ca carbons of residues Ile6 and Thr53,
and of residues Glu15 and Thr44 for the 25 Hz tolerance (C) and 50 Hz tolerance (D). The inclusion of distance restraints dramatically improves the convergence of the fits
with larger tolerances (greater experimental uncertainties).
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by the histogram of Fig. 7A. The average deviation of the calculated
frequencies from the simulated ‘‘experimental’ data is around 7 Hz,
while residues 11, 16, 33 and 44 (our numbering) are consistently
fit less well. The location of residues 16, 33 and 44 is in the b-turn,
and residue 11 is at the beginning of a b-sheet, respectively. In OS
NMR, the accuracy of the measured dipolar couplings ultimately
depends on the stability of the dipolar scaling factor and experi-
mental linewidths (about 200 Hz), so even greater uncertainties
may need to be considered. When the tolerance for the fitting of
the input data is increased to 25 Hz (and up to 50 Hz) in all four
dimensions, the back-calculated structures begin to diverge, and
about 40% of the RMSDs are around 7 Å or greater with the average
deviation per residue of 12 Hz and higher (see Supplementary
material).

Accurate fitting of the residues in the linkage regions or at the
beginning/end of an a-helix or b-sheet is important since relatively
small deviations at these locations could lead to an entirely differ-
ent tertiary conformation. Therefore, more information pertaining
to the linkage residues may be required to obtain convergent struc-
tural solutions for proteins consisting of several secondary struc-
ture elements. Specifically, checking for satisfied hydrogen bonds,
hydrophobic restraints [44], and electrostatic potential [45] of
the entire protein structure within the membrane may be helpful
in eliminating the unfavorable solutions [45–47] and treating the



Fig. 9. (A) Structural fitting of simulated three-dimensional ‘‘shiftless’’ spectra of two transmembrane a-helices (residues 104 to 155) of bacteriorhodopsin. When the initial
structure is predominantly aligned about the z-axis, with the tolerance for the fitting of the input data of 120 Hz back calculation yields a converged set of solutions having
RMSDs of less than 2 Å. (B) The mean of the deviation (in Hz) at each residue for 100 calculated structures with respect to the simulated data from the PDB coordinates. The
two cylinders at the bottom depict the a-helices. (C) When the initial structure is rotated by about 90�, with the tolerance of 25 Hz, about 60% of the RMSDs for the back-
calculated structures are more than 5 Å. Rotation arrows show the view angles of the calculated structures relative to the original orientation. (D) The rms deviation (in Hz) at
each residue for 100 calculated structures shown in part C with respect to the simulated data.
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data for the more dynamic loop regions. Moreover, the ab-initio
Rosetta method [48], may also be helpful in selecting the plausible
backbone conformations by comparing the calculated segments
with the known protein structures of similar sequences.

Additional important restraints include long-range distance
constraints [44], which are not yet directly accessible in OS NMR
but are obtainable from the methyl–methyl NOE data [49] in the li-
quid state, site-directed spin labeling EPR [50,51] and MAS [52,53].
As an illustrative example, we have calculated structures from the
simulated 3D data including the 1H–15N, 1H–13Ca, and 13Ca–15N
dipolar couplings and two distance restraints between the Ca
atoms of residues Ile6 and Thr53 and residues Glu15 and Thr44
(as determined from the original structure 2GB1; see Supporting
Material for additional information). A structure was accepted if
both distance restraints were satisfied within ±1 Å. Fig. 8 shows
that with a tolerance of 25 Hz, 312 structures (out of 1000 total)
satisfying the above distance restraints have the RMSD’s of less
than 2 Å. When the tolerance is further increased to 50 Hz, 33
out of 1000 back-calculated structures that satisfy the distance re-
straints have the RMSDs less than 2.5 Å relative to the original
structure. Therefore, the number of unfavorable structures can be
reduced dramatically by including the distances between two or
more pairs of Ca atoms as an additional restraint even with larger
uncertainties in the input data. The optimal positioning of these re-
straints depends on the expected protein topology, but longer-dis-
tance restraints are generally more stringent [44].

3.4. Structural fitting of a helical hairpin derived from
bacteriorhiodopsin

To illustrate the general applicability of the algorithm to other
topologies, we have applied it to the simulated data for the light-
driven proton pump bacteriorhodopsin, which could be considered
as a structural paradigm for G-protein coupled receptors. Bacterio-
rhodopsin from Halobacterium salinarum is composed of seven a-
helical transmembrane chains, and was solved by X-ray crystallog-
raphy with a resolution of 1.55Å [54] (PDB ID 1C3W). Two a-heli-
ces (containing residues Asp104-Gly155) have been chosen for a
representative calculation. Three-dimensional ‘‘shiftless’’ spectra
including 1H–15N, 1H–13Ca and 13Ca–15N dipolar couplings have
been simulated. The torsion angles have been restricted by the
Ramachandran plots having the lowest probability cutoff of
1 � 10�3 for the loop region (residues Leu127-Val130), and within
±30� relative to U = �60�, W = �45� for the two helical regions.
Interestingly, when the helical hairpin is preferentially aligned
about the z-axis (cf. Fig. 9A), which would correspond to its native
orientation in the membrane, back-calculation from the synthetic
spectrum yields a converged set of solutions with the tolerance
up to 120 Hz. (Results with higher tolerances for the input data
are presented in the Supplementary material.) By contrast, when
the original structure is rotated by 90� (cf. Fig. 9C), the back-calcu-
lated structures begin to diverge with a tolerance of only 25 Hz.
Fig. 9C shows the top view of the back-calculated structures to
illustrate the scatter in the structural solutions. This indicates that
error propagates differently into the calculated structures depend-
ing on their overall orientation, as expected for inhomogeneously
broadened frequency anisotropies. It should be also noted that
the analysis using MOLMOL 2.0 [55] of the PDB structure 1C3W
has revealed that the twist angle x for the peptide linkages is
around 176�, especially in the connecting loop region. This may im-
ply that deviations from planarity in membrane proteins may need
to be treated more differently than for soluble proteins, which ex-
hibit the average value of around 178�. This merits additional
investigation as more high-resolution data on membrane proteins
become available in the future.

4. Conclusions

We have examined the influence of the variations in the magni-
tude and orientation of angular-dependent solid-state NMR
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observables on the structural fitting of macroscopically aligned
proteins. Even though the principal components of the 15N CSA
can be determined with high precision, a somewhat undefined ori-
entation of the 15N CSA tensor results in a considerable divergence
of the calculated protein structures.

By contrast, multidimensional ‘‘shiftless’’ solid-state NMR spec-
tra involving solely the heteronuclear dipolar couplings associated
with the 1H, 13C and 15N spin-bearing nuclei can perform as an effi-
cient tool for the determination of three-dimensional protein
structures. This was illustrated by obtaining converged sets of
solutions from the synthetic datasets for protein G (a soluble pro-
tein) and for bacteriorhodopsin (a transmembrane protein) with a
simulated experimental uncertainty of up to 15 Hz and 120 Hz,
respectively. Non-planarity of the peptide unit as defined by the
third torsion angle, x has been included in the present version of
the algorithm. Moreover, the formulation of the algorithm entirely
in the torsion-angle space simultaneously provides both the Rama-
chandran [56] and Ca-geometry validation [43] ‘‘on-a-fly’’. At pres-
ent, conformations of transmembrane regions having around 50
residues can be calculated from OS NMR data. With the addition
of more constraints, especially those derived from the heteronu-
clear couplings to 13C spins and long-range distance restraints,
‘‘shiftless’’ solid-state NMR spectra will have the potential of
resolving the structures of more complex polypeptides and pro-
teins solely based on the experimental data even in the presence
of larger experimental uncertainties.
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Appendix A. Supplementary data

Histograms of observable 15N CSA values taking into account
variations in the principal components of the CSA tensor (r11,
r22, r33) and its orientation as given by the angle cN; simulations
with larger experimental uncertainty. Supplementary data associ-
ated with this article can be found, in the online version, at
doi:10.1016/j.jmr.2011.06.008.
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